考試輔導(dǎo):GMAT數(shù)學(xué)精解--算術(shù)概述

            雕龍文庫 分享 時(shí)間: 收藏本文

            考試輔導(dǎo):GMAT數(shù)學(xué)精解--算術(shù)概述

              1.平均數(shù)

              2.中數(shù)

              To calculate the median of n numbers,first order the numbers from least to greatest;if n is odd,the median is defined as the middle number,while if n is even,the median is defined as the average of the two middle numbers. For the data 6, 4, 7, 10, 4, the numbers, in order, are 4, 4, 6, 7, 10, and the median is 6, the middle number. For the numbers 4, 6, 6, 8, 9, 12, the median is /2 = 7. Note that the mean of these numbers is 7.5.

              3.眾數(shù):一組數(shù)中的眾數(shù)是指出現(xiàn)頻率最高的數(shù)。

              例:the mode of 7,9,6,7,2,1 is 7。

              4.值域:表明數(shù)的分布的量,其被定義為最大值減最小值的差。

              例:the range of1,7,27,27,36 is 36-= 37。

              5.標(biāo)準(zhǔn)方差:

              One of the most common measures of dispersion is the standard deviation. Generally speaking, the greater the data are spread away from the mean, the greater the standard deviation. The standard deviation of n numbers can be calculated as follows:

              find the arithmetic mean ;

              find the differences between the mean and each of the n numbers ;

              square each of the differences ;

              find the average of the squared differences ;

              take the nonnegative square root of this average.

              Notice that the standard deviation depends on every data value, although it depends most on values that are farthest from the mean. This is why a distribution with data grouped closely around the mean will have a smaller standard deviation than data spread far from the mean.

              6.排列與組合

              There are some useful methods for counting objects and sets of objects without actually listing the elements to be counted. The following principle of Multiplication is fundamental to these methods.

              If a first object may be chosen in m ways and a second object may be chosen in n ways, then there are mn ways of choosing both objects.

              As an example, suppose the objects are items on a menu. If a meal consists of one entree and one dessert and there are 5 entrees and 3 desserts on the menu, then 53 = 15 different meals can be ordered from the menu. As another example, each time a coin is flipped, there are two possible outcomes, heads and tails. If an experiment consists of 8 consecutive coin flips, the experiment has 28 possible outcomes, where each of these outcomes is a list of heads and tails in some order.

              階乘:factorial notation

              假如一個(gè)大于1的整數(shù)n,計(jì)算n的階乘被表示為n!,被定義為從1至n所有整數(shù)的乘積,

              例如:4! = 4321= 24

              

              排列:permutations

              The factorial is useful for counting the number of ways that a set of objects can be ordered. If a set of n objects is to be ordered from 1st to nth, there are n choices for the 1st object, n-1 choices for the 2nd object, n-2 choices for the 3rd object, and so on, until there is only 1 choice for the nth object. Thus, by the multiplication principle, the number of ways of ordering the n objects is

              n = n!

              For example, the number of ways of ordering the letters A, B, and C is 3!, or 6:ABC, ACB, BAC, BCA, CAB, and CBA.

              These orderings are called the permutations of the letters A, B, and C.也可以用P 33表示.

              Pkn = n!/ !

              例如:1, 2, 3, 4, 5這5個(gè)數(shù)字構(gòu)成不同的5位數(shù)的總數(shù)為5! = 120

              組合:combination

              A permutation can be thought of as a selection process in which objects are selected one by one in a certain order. If the order of selection is not relevant and only k objects are to be selected from a larger set of n objects, a different counting method is employed.

              Specially consider a set of n objects from which a complete selection of k objects is to be made without regard to order, where 0n . Then the number of possible complete selections of k objects is called the number of combinations of n objects taken k at a time and is Ckn.

              從n個(gè)元素中任選k個(gè)元素的數(shù)目為:

              Ckn. = n!/ ! k!

              例如:從5個(gè)不同元素中任選2個(gè)的組合為C25 = 5!/2! 3!= 10

              排列組合的一些特性

              加法原則:Rule of Addition

              做某件事有x種方法,每種方法中又有各種不同的解決方法。例如第一種方法中有y1種方法,第二種方法有y2種方法,等等,第x種方法中又有yx種不同的方法,每一種均可完成這件事,即它們之間的關(guān)系用or表達(dá),那么一般使用加法原則,即有:y1+ y2+。。。+ yx種方法。

              乘法原則:Rule of Multiplication

              完成一件事有x個(gè)步驟,第一步有y1種方法,第二步有y2種方法,。。。,第x步有yx種方法,完成這件事一共有y1 y2 。。。 yx種方法。

              以上只是GMAT考題中經(jīng)常涉及到的數(shù)學(xué)算術(shù)方面的問題,今后我們將陸續(xù)在新開辟的網(wǎng)上課堂中介紹代數(shù)、幾何以及系統(tǒng)的習(xí)題、講解,以幫助大家在GMAT數(shù)學(xué)考試中更好地發(fā)揮中國學(xué)生的優(yōu)勢(shì),拿到讓美國人瞠目結(jié)舌的成績!

              

              1.平均數(shù)

              2.中數(shù)

              To calculate the median of n numbers,first order the numbers from least to greatest;if n is odd,the median is defined as the middle number,while if n is even,the median is defined as the average of the two middle numbers. For the data 6, 4, 7, 10, 4, the numbers, in order, are 4, 4, 6, 7, 10, and the median is 6, the middle number. For the numbers 4, 6, 6, 8, 9, 12, the median is /2 = 7. Note that the mean of these numbers is 7.5.

              3.眾數(shù):一組數(shù)中的眾數(shù)是指出現(xiàn)頻率最高的數(shù)。

              例:the mode of 7,9,6,7,2,1 is 7。

              4.值域:表明數(shù)的分布的量,其被定義為最大值減最小值的差。

              例:the range of1,7,27,27,36 is 36-= 37。

              5.標(biāo)準(zhǔn)方差:

              One of the most common measures of dispersion is the standard deviation. Generally speaking, the greater the data are spread away from the mean, the greater the standard deviation. The standard deviation of n numbers can be calculated as follows:

              find the arithmetic mean ;

              find the differences between the mean and each of the n numbers ;

              square each of the differences ;

              find the average of the squared differences ;

              take the nonnegative square root of this average.

              Notice that the standard deviation depends on every data value, although it depends most on values that are farthest from the mean. This is why a distribution with data grouped closely around the mean will have a smaller standard deviation than data spread far from the mean.

              6.排列與組合

              There are some useful methods for counting objects and sets of objects without actually listing the elements to be counted. The following principle of Multiplication is fundamental to these methods.

              If a first object may be chosen in m ways and a second object may be chosen in n ways, then there are mn ways of choosing both objects.

              As an example, suppose the objects are items on a menu. If a meal consists of one entree and one dessert and there are 5 entrees and 3 desserts on the menu, then 53 = 15 different meals can be ordered from the menu. As another example, each time a coin is flipped, there are two possible outcomes, heads and tails. If an experiment consists of 8 consecutive coin flips, the experiment has 28 possible outcomes, where each of these outcomes is a list of heads and tails in some order.

              階乘:factorial notation

              假如一個(gè)大于1的整數(shù)n,計(jì)算n的階乘被表示為n!,被定義為從1至n所有整數(shù)的乘積,

              例如:4! = 4321= 24

              

              排列:permutations

              The factorial is useful for counting the number of ways that a set of objects can be ordered. If a set of n objects is to be ordered from 1st to nth, there are n choices for the 1st object, n-1 choices for the 2nd object, n-2 choices for the 3rd object, and so on, until there is only 1 choice for the nth object. Thus, by the multiplication principle, the number of ways of ordering the n objects is

              n = n!

              For example, the number of ways of ordering the letters A, B, and C is 3!, or 6:ABC, ACB, BAC, BCA, CAB, and CBA.

              These orderings are called the permutations of the letters A, B, and C.也可以用P 33表示.

              Pkn = n!/ !

              例如:1, 2, 3, 4, 5這5個(gè)數(shù)字構(gòu)成不同的5位數(shù)的總數(shù)為5! = 120

              組合:combination

              A permutation can be thought of as a selection process in which objects are selected one by one in a certain order. If the order of selection is not relevant and only k objects are to be selected from a larger set of n objects, a different counting method is employed.

              Specially consider a set of n objects from which a complete selection of k objects is to be made without regard to order, where 0n . Then the number of possible complete selections of k objects is called the number of combinations of n objects taken k at a time and is Ckn.

              從n個(gè)元素中任選k個(gè)元素的數(shù)目為:

              Ckn. = n!/ ! k!

              例如:從5個(gè)不同元素中任選2個(gè)的組合為C25 = 5!/2! 3!= 10

              排列組合的一些特性

              加法原則:Rule of Addition

              做某件事有x種方法,每種方法中又有各種不同的解決方法。例如第一種方法中有y1種方法,第二種方法有y2種方法,等等,第x種方法中又有yx種不同的方法,每一種均可完成這件事,即它們之間的關(guān)系用or表達(dá),那么一般使用加法原則,即有:y1+ y2+。。。+ yx種方法。

              乘法原則:Rule of Multiplication

              完成一件事有x個(gè)步驟,第一步有y1種方法,第二步有y2種方法,。。。,第x步有yx種方法,完成這件事一共有y1 y2 。。。 yx種方法。

              以上只是GMAT考題中經(jīng)常涉及到的數(shù)學(xué)算術(shù)方面的問題,今后我們將陸續(xù)在新開辟的網(wǎng)上課堂中介紹代數(shù)、幾何以及系統(tǒng)的習(xí)題、講解,以幫助大家在GMAT數(shù)學(xué)考試中更好地發(fā)揮中國學(xué)生的優(yōu)勢(shì),拿到讓美國人瞠目結(jié)舌的成績!

              

            信息流廣告 競(jìng)價(jià)托管 招生通 周易 易經(jīng) 代理招生 二手車 網(wǎng)絡(luò)推廣 自學(xué)教程 招生代理 旅游攻略 非物質(zhì)文化遺產(chǎn) 河北信息網(wǎng) 石家莊人才網(wǎng) 買車咨詢 河北人才網(wǎng) 精雕圖 戲曲下載 河北生活網(wǎng) 好書推薦 工作計(jì)劃 游戲攻略 心理測(cè)試 石家莊網(wǎng)絡(luò)推廣 石家莊招聘 石家莊網(wǎng)絡(luò)營銷 培訓(xùn)網(wǎng) 好做題 游戲攻略 考研真題 代理招生 心理咨詢 游戲攻略 興趣愛好 網(wǎng)絡(luò)知識(shí) 品牌營銷 商標(biāo)交易 游戲攻略 短視頻代運(yùn)營 秦皇島人才網(wǎng) PS修圖 寶寶起名 零基礎(chǔ)學(xué)習(xí)電腦 電商設(shè)計(jì) 職業(yè)培訓(xùn) 免費(fèi)發(fā)布信息 服裝服飾 律師咨詢 搜救犬 Chat GPT中文版 語料庫 范文網(wǎng) 工作總結(jié) 二手車估價(jià) 情侶網(wǎng)名 愛采購代運(yùn)營 情感文案 古詩詞 邯鄲人才網(wǎng) 鐵皮房 衡水人才網(wǎng) 石家莊點(diǎn)痣 微信運(yùn)營 養(yǎng)花 名酒回收 石家莊代理記賬 女士發(fā)型 搜搜作文 石家莊人才網(wǎng) 銅雕 關(guān)鍵詞優(yōu)化 圍棋 chatGPT 讀后感 玄機(jī)派 企業(yè)服務(wù) 法律咨詢 chatGPT國內(nèi)版 chatGPT官網(wǎng) 勵(lì)志名言 兒童文學(xué) 河北代理記賬公司 教育培訓(xùn) 游戲推薦 抖音代運(yùn)營 朋友圈文案 男士發(fā)型 培訓(xùn)招生 文玩 大可如意 保定人才網(wǎng) 黃金回收 承德人才網(wǎng) 石家莊人才網(wǎng) 模型機(jī) 高度酒 沐盛有禮 公司注冊(cè) 造紙術(shù) 唐山人才網(wǎng) 沐盛傳媒
            主站蜘蛛池模板: AV鲁丝一区鲁丝二区鲁丝三区| 一区二区中文字幕在线观看| 国产无码一区二区在线| 精品国产福利一区二区| 岛国精品一区免费视频在线观看| 国产成人精品日本亚洲专一区| 国产成人高清精品一区二区三区 | 国产成人精品久久一区二区三区av| 99精品国产高清一区二区| 国产亚洲自拍一区| 国产一区二区在线观看麻豆| 国产手机精品一区二区| 无码精品国产一区二区三区免费| 精品亚洲一区二区三区在线播放| 精产国品一区二区三产区| 亚洲码一区二区三区| 亚洲爆乳无码一区二区三区| 亚洲一区日韩高清中文字幕亚洲| 国产一区二区视频免费| 欧美亚洲精品一区二区| 午夜AV内射一区二区三区红桃视 | 欧美激情国产精品视频一区二区| 人妻夜夜爽天天爽爽一区| 日本免费一区二区久久人人澡| 香蕉视频一区二区三区| 波多野结衣中文字幕一区| 精品视频午夜一区二区| 视频在线一区二区三区| 亚洲AV无码一区二三区| 国产伦一区二区三区高清| 欧洲精品码一区二区三区免费看 | 国产一区精品视频| 国产精品无码一区二区三区免费| 国产av一区最新精品| 精品一区二区三区3d动漫| 538国产精品一区二区在线| 中文字幕一区在线观看| 久久精品一区二区| 影音先锋中文无码一区| 午夜视频一区二区三区| 波多野结衣一区二区三区高清在线|